EMI-GCN: a hybrid model for real-time monitoring of multiple bolt looseness using electromechanical impedance and graph convolutional networks

Author:

Zhou LuORCID,Chen Si-XinORCID,Ni Yi-QingORCID,Choy Alex Wai-Hing

Abstract

Abstract Electro-mechanical impedance (EMI) has been proved as an effective non-destructive evaluation indicator in monitoring the looseness of bolted joints. Yet due to the complex electro-mechanical coupling mechanism, EMI-based methods in most cases are considered as qualitative approaches and are only applicable for single-bolt monitoring. These issues limit practical applications of EMI-based methods in industrial and transportation sectors where real-time and reliable monitoring of multiple bolted joints in a localized area is desired. Previous research efforts have integrated various machine learning (ML) algorithms in EMI-based monitoring to enable quantitative diagnosis, but only one-to-one (single sensor single bolt) case was considered, and the EMI–ML integrations are basically unnatural and ingenious by learning the EMI measurements from isolated sensors. This paper presents a novel EMI-based bolt looseness monitoring method incorporating both physical mechanism (acoustic attenuation) and data-driven analysis, by implementing a lead zirconate titanate (PZT) sensor network and a built-in graph convolutional network (GCN) model. The GCN model is constructed in such a way that the structure of the PZT network is fully represented, with the sensor-bolt distance and sweeping frequency encoded in the propagation function. The proposed method takes into account not only the EMI signature but also the relationship between the sensing nodes and the bolted joints and can quantitatively infer the torque loss of multiple bolts through node-level outputs. A proof-of-concept experiment was conducted on a twin-bolt plate, and results show that the proposed method outperforms other baseline models either without a graph network structure or does not consider sensor-bolt distance. The developed hybrid model provides new thinking in interpreting sensor networks which are widely adopted in structural health monitoring, and the approach is expected to be applicable in practical scenarios such as rail insulated joints and aircraft wings where bolt joints are clustered.

Funder

Research Grants Council, University Grants Committee

Innovation and Technology Commission

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3