Quasi-static crashworthiness behaviour of auxetic tubular structures based on rotating deformation mechanism

Author:

Solak KemalORCID,Orhan Suleyman NazifORCID

Abstract

Abstract Auxetic materials have attracted significant interest due to their exceptional mechanical characteristics and distinctive deformation modes. Nevertheless, the practical use of these materials in engineering is constrained by their limited ability to absorb energy. Thus, enhancing the energy absorption (EA) capabilities of auxetic materials is crucial to expand their range of potential applications. In this study, the EA capabilities of auxetic tubular structures with rotating deformation mechanisms are examined, with a specific emphasis on three different perforation shapes: elliptic, peanut, and square, along with their modified versions incorporating stiffeners. The study employs a combination of experimental testing and numerical modelling, utilising ANSYS/LS-DYNA to evaluate various crashworthiness parameters. These parameters include total EA, specific EA, maximum crushing force, and crushing force efficiency, all of which are assessed under quasi-static compression conditions. The research highlights the importance of perforation shape and stiffener incorporation in enhancing crashworthiness. Results show that elliptic perforations exhibit superior EA and stiffened auxetic models outperform conventional ones in terms of crash absorber performance. The presence of stiffeners significantly improves the ability of tubular structures to withstand crushing forces. Furthermore, the study validates the numerical model against experimental findings, demonstrating a high level of agreement in terms of crushing force–displacement, EA, and failure modes. The research provides valuable insights into the design and performance of crashworthy structures and offers potential applications in various fields where impact resistance and EA are critical.

Funder

Erzurum Teknik Üniversitesi

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3