Electrohydrodynamic jet printed bioinspired piezoelectric hair-like sensor for high-sensitivity air-flow detection

Author:

Wang DazhiORCID,Li Yikang,Hu Xin,Lu Liangkun,Xu Pengfei,Chen Xiangji,Liu Chang,Wang Lunxiang,Liu Ben,Suo Liujia,Cui Yan,Liang Junsheng

Abstract

Abstract Inspired by the highly sensitive hairs of creatures in nature, this work proposes a high-aspect-ratio piezoelectric sensor that is processed using electrohydrodynamic jet (E-jet) printing technology. A thin layer of piezoelectric material is directly written on the surface of tungsten steel microwire by E-jet printing. The piezoelectric material was crystallized by high-temperature annealing and fully bonded to the microwire. The annealed piezoelectric thin film was then sputtered with copper electrodes which forms a piezoelectric hair-like sensor with a diameter of 120 μm and an aspect ratio of 300. It was observed that the piezoelectric hair-like sensor generates 18 mV with a displacement of 100 μm. The output signal increases linearly with the increase of lateral displacement and velocity. It was examined that the piezoelectric hair-like sensor can detect airflow velocity as low as 0.01 m s−1, which shows a lower detection threshold compared to piezoelectric hair-like airflow sensors processed in other ways. In addition, the piezoelectric hair-like sensor allows for the detection of an airflow velocity of 10 m s−1 and a response time of 70 ms. The experimental results show that the piezoelectric hair-like sensor has high sensitivity, a wide detection range and rapid detection response, which is expected to be a high-performance sensor for biosensing and airflow monitoring.

Funder

Ningbo Institute of Dalian University of Technology

National Key R&D Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3