Functionally varied negative-stiffness metamaterial core sandwich structures with three-phase bending deformation

Author:

Aewzipo Nathakorn,Olarnrithinun Sutee,Aimmanee SontipeeORCID

Abstract

Abstract This paper introduces a novel class of negative-stiffness (NS) core sandwich composite structures that exhibit unique mechanical performance, including shape recovery, superelasticity, and energy absorption (EA) in bending and shear mode. The core of these structures consists of a periodic cellular arrangement of double-curved beams that undergo consecutive local snap-buckling transitions between multiple equilibrium states, enabling the structures to change shape reversibly between their initial and deformed configurations. To characterize the force-displacement relationship of the core, a comprehensive analysis was conducted using a combination of 3D printed models and finite-element simulations. The metamaterial core with gradient-thickness negative-stiffness beams were examined under uniform compression, demonstrating that the snap-through behavior of the curved beams was intricately controlled by the beam thickness in each row. The numerical simulations accurately predicted the deformation characteristics of the graded cellular core, supporting the design of a metamaterial core with functionally varied beam thickness for nonuniform transverse loading. This led to spatially controlled NS core material with specific EA of around 50 J kg−1 and an apparent core shear strength of 0.1 MPa, all mainly within the reusable elastic regime. The resulting sandwich structures efficiently mitigated the localized effect from concentrated compressive forces and achieved complete snap-through buckling in all curve beams. Three-point bending response revealed three distinct phases of flexural deformation: the local facial bending phase, the sequential core-snapping superelastic phase, and the global bending phase.

Funder

Thailand Science Research and Innovation

National Science, Research and Innovation Fund

Publisher

IOP Publishing

Reference48 articles.

1. Creative design for sandwich structures: a review;Feng;Int. J. Adv. Robot. Syst.,2020

2. Introduction;ALLEN,1969

3. Bending behavior of sandwich composite structures with tunable 3D-printed core materials;Li;Compos. Struct.,2017

4. Architected cellular materials;Schaedler;Annu. Rev. Mater. Res.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3