Study on sliding friction characteristics of magnetorheological elastomer—copper pair affected by magnetic-controlled surface roughness and elastic modulus

Author:

Li Rui,Wang Di,Li Xinyan,Liao ChangrongORCID,Yang Ping-anORCID,Ruan HaiboORCID,Shou MengjieORCID,Luo Jiufei,Wang XiaojieORCID

Abstract

Abstract To optimize the online friction coefficient adjustment, it is necessary to study the parameter change features of the magneto-sensitive polymer and its influence on the friction characteristics under magnetic field. A series of magnetorheological elastomers (MREs) with different initial surface roughness were prepared, and a sliding friction platform with MRE—copper block pair was built to carry out magnetic-controlled friction characteristic experiment. Results show that the sliding friction coefficient of MRE decreases with the increase of the magnetic field, but the degree of reduction is quite different under different initial surface roughness and elastic modulus. When the initial surface roughness of MRE is between 0.5 and 2.5 μm and the carbonyl iron particles volume fraction is between 10% and 15%, its magnetic-controlled friction coefficient has the largest reduced value of 22.75%. Moreover, features of elastic modulus and surface topography under magnetic field were tested and analyzed. By combining with the single peak contact model and the friction binomial law, the relationship between the surface roughness and elastic modulus of MREs and the sliding friction force is deduced, and it is proved that the friction coefficient is affected by the coupling effect of surface roughness and elastic modulus. The magnetic-controlled elastic modulus is the key factor, which determines the overall downward trend of the friction coefficient of MREs. Magnetic-controlled surface roughness also plays an important role in the adjustable range of friction coefficient, and reducing the initial surface roughness can increase the magnetic-controlled friction coefficient adjustable range.

Funder

National Nature Science Foundation of People’s Republic of China

Special Key Project of Technological Innovation and Application Development in Chongqing

Innovation research group of universities in Chongqing

Science and Technology Research Program of Chongqing Municipal Education

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3