Design of novel 3D auxetic structures based on S-shaped unit-cells

Author:

Khadem-Reza Laleh,Etemadi EhsanORCID,Abbaslou Mohammad,Hu HongORCID

Abstract

Abstract In this study, four novel three-dimensional (3D) warp and woof structures with negative Poisson’s ratio (NPR) were designed and assembled using the interlocking assembly method. The designed structures, including S-shaped auxetic unit-cells (UCs), exhibited NPR properties in two perpendicular planes. Because of the lower stress concentration of S-shaped than conventional re-entrant UCs, this UC was suggested for use in energy absorber structures. Furthermore, the mechanical behavior of the designed structures under quasi-static loading was simulated using the finite element method. In addition, two designed structures were fabricated using fused deposition modeling 3D printing technology and subjected to quasi-static compressive loading. The results of FE simulation and experimental work were verified and good agreement was found between them. Stress–strain diagrams, values of energy absorption (W), specific energy absorption (W s), and NPRs in two perpendicular planes were evaluated. The results showed that four designed auxetic structures had NPR in two perpendicular directions. In addition, stress concentration contours of the structures were investigated using FE simulation. Finally, considering the results of energy absorption and stress concentration for designed structures, the proposed structure to be utilized for energy-absorbing systems was introduced.

Funder

Iran National Science Foundation: INSF

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3