Failure analysis of self-healing epoxy resins using microencapsulated 5E2N and carbon nanotubes

Author:

Zamal Hasna Hena,Barba David,Aïssa BrahimORCID,Haddad Emile,Rosei Federico

Abstract

Abstract Investigation on self-healing properties of epoxy containing microcapsules of pure 5-ethylidene-2-norbornene (5E2N) and mixed multi-walled carbon nanotube (MWCNT) suspension is presented in this work using lap shear and mode I fracture tests. While both systems show significant self-healing functionalities between 39% and 97%, those repaired with MWCNT/5E2N microcapsules are found to have mechanical recovery efficiencies two times higher than those containing 5E2N alone, under different types of loading. MWCNT/5E2N microcapsules are also found to improve the physical strength of the epoxy matrix much higher than microcapsules containing only 5E2N. Compared to self-healing epoxy systems made of 5E2N microvessels, the dispersion of 0.10 wt.% of only MWCNTs inside the encapsulated monomer increases the lap shear strengths of the pristine materials and the self-healing materials tested after one fracture/curing cycle, by about 50% and 250%, respectively. Using fractographic observations, Raman spectroscopy and scanning electron microscopy, we observe the occurrence of a ring opening metathesis polymerization reaction and the contribution of MWCNTs to strengthening the material. The present work indicates that the MWCNT/5E2N microcapsule when incorporated into an appropriate epoxy formulation can serve as efficient self-healing matrix material for laminated composites, as well as self-healing structural adhesives for composite bonded joints, two features that make this system highly relevant for applications in aerospace engineering.

Funder

Prima Quebec

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3