Combining orbit jump and potential wells optimizations for nonlinear vibration energy harvesters

Author:

Saint-Martin CORCID,Morel AORCID,Charleux LORCID,Roux EORCID,Gibus DORCID,Benhemou AORCID,Badel AORCID

Abstract

Abstract Nonlinear vibration energy harvesters (VEHs) are widely used for scavenging vibrational energy due to their broadband behaviors. However, they exhibit multiple orbits of different powers for a given excitation, including low-power orbits that might limit their performance. To address this issue and enhance nonlinear VEHs performance, various studies have defined orbit jump strategies to transition from low-power to high-power orbits. Another way to maximize the power of nonlinear VEHs is to optimize their geometry by finely engineering their potential wells (PWs). In this letter, we propose an orbit jump strategy for bistable VEHs that combines the two latter approaches, i.e. that simultaneously optimizes their PWs while jumping from low-power to high-power orbits. This orbit jump strategy is optimized using a numerical criterion that takes into account the robustness of the jumps and the invested energy. The proposed orbit jump strategy has been experimentally validated for vibration frequencies between 30 and 60 Hz. It is shown that the proposed approach can increase the power by an average of 121 times over the considered frequency range. Compared to traditional orbit jump strategies, the proposed approach, which combines orbit jumping and PWs optimizations, increases by up to three times the harvested power.

Funder

European Union

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3