Electrochemo-poromechanics of ionic polymer metal composites: identification of the model parameters

Author:

Bardella LorenzoORCID,Panteghini AndreaORCID

Abstract

Abstract We propose a procedure to identify the parameters of a model for the multiphysics response of ionic polymer metal composites (IPMCs). Aiming at computational efficiency and accuracy, the procedure combines analytical structural mechanics and fully-coupled electrochemo-poromechanics, additionally resorting to an evolutionary algorithm. Specifically, we consider the finite-deformation electrochemo-poromechanical theory recently developed by our group, which couples the linear momentum balance, the mass balances of solvent and mobile ions, and the Gauss law. Remarkably, the theory constitutively accounts for the cross-diffusion of solvent and mobile ions. This, in conjunction with a generalised finite element implementation that we have recently proposed, allows us to accurately capture the boundary layers of ions and solvent concentrations occurring at the membrane–electrode interfaces, which govern the IPMC behaviour in actuation and short-circuit sensing. Thus, we can explore the IPMC behaviour under external actions consistent with applications and obtain accurate predictions with a reasonable computational cost for wide ranges of model parameters. We focus on experimental data from the literature that are concerned with Nafion™-Pt IPMCs of variable membrane thickness and subjected to peak voltage drop across the electrodes ranging from 2 to 3.5 V (under alternating current). Importantly, the considered tests deal with both the tip displacement of cantilever IPMCs and the blocking force of propped-cantilever IPMCs. Overall, the adopted theory and the proposed procedure allow unprecedented agreement between predictions and experimental data, thus marking a step forward in the IPMC characterisation.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3