Design and analysis of a d15 mode piezoelectric energy generator using friction-induced vibration

Author:

Xiao YuORCID,Karnaoukh Sviatoslaw,Wu NanORCID

Abstract

Abstract Research works have been conducted on transverse and longitudinal mode piezoelectric energy generation to collect energy from ambient vibrations. However, the inconsistency with the frequency of the energy source and low output power density remain problems for high energy output. In this work, we propose a shear mode piezoelectric energy generator, which utilizes the friction-induced vibration (FIV) and high shear mode piezoelectric coefficient to improve the energy output. A piezoelectric coupled FIV mathematical model is developed to accurately calculate the dynamic vibration response and voltage output. The dynamic voltage response is validated by experiment, and it proves the possibility of continuous friction-induced high-frequency vibration. The energy generation process is evaluated by transient charging simulation of a storage capacitor through an iteration process, which was experimentally validated in the literature. Parameter studies have been conducted to investigate the influences of the piezoelectric patch dimensional parameters, vibration system parameters, friction model parameters, methods of electrical connections, and different piezoelectric materials on the energy generation performance to provide guidance for better design. Under ideal experiment conditions with proper parameters, a volume of 6.25 × 10 8 m3 PZT4 piezoelectric material indicates root mean square (RMS) charging power density of 5.38 × 10 3 Wm−3 and 4.70 × 10 3 Wm−3 with electrically in parallel and electrically in series, respectively. While using the same amount of material and structural setup, the single crystal PMN-PT piezoelectric material shows RMS charging power density of 2.72 × 10 4 Wm−3 and 2.58 × 10 4 Wm−3 with electrically in parallel and electrically in series, correspondingly. These promising results demonstrate that close to W-level RMS charging power output may be realized by structure optimization of energy generator design and incorporating multiple generators together for operation. Possible incorporation into vehicle braking systems can be considered to utilize the wasted friction energy, and it may offer an energy supply for low-power wireless devices.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3