Abstract
Abstract
Harvesting energy with piezoelectric nanoparticles enables the development of self-powered devices. Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF) has been widely used in a variety of fields due to its superior piezoelectric properties. PVDF’s piezoelectric performance is affected by the presence of polar phase in the crystalline structure. The electrospinning process was used in this study to achieve high β phase ratios in the PVDF crystalline structure using various additives (graphene, boron nitride, and quartz (SiO2)). The Taguchi experimental design method was used to determine the most significant parameters affecting β phase content from seven factors, as well as the optimal levels of the significant factors. The Fourier transform infrared, x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray and differential scanning calorimetry analyses were used to characterize the composite PVDF nanofiber mats produced under optimal conditions, and the output voltage was measured using an oscilloscope. The composite PVDF nanofiber mat with the highest β phase concentration demonstrated a maximum output voltage of 8.68 V under optimal conditions, indicating that it outperformed than pure PVDF under equal electrospinning conditions.
Funder
Coordinatorship of Scientific Research Project
Konya Teknik Üniversitesi
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献