A smoothly tunable shape memory metamaterial with adaptive bandgaps for ultra-wide frequency spectrum vibration control

Author:

Song YihaoORCID,Shen YanfengORCID

Abstract

Abstract This article presents a smoothly tunable shape memory elastic metamaterial with adaptive bandgaps enabling the broadband frequency vibration control. The underlying bandgap-tuning mechanism arises from the reversible large deformation induced by shape memory alloy (SMA) element under electro-thermal loads, through which, various microstructural shape morphing could be achieved. Via delicately designing the unit cell, the numerically obtained band structures and effective medium properties display a successful attainment of the vibration stop-passing band formation and smoothly controllable two-way tuning phenomenon for a series of transitional and intermediate status. The overall controllable frequency scope could be shifted over an ultra-wide band. Subsequently, a systematic parametric study is carried out to unfold the bandgap-adjusting patterns by altering the apparent structural stiffness and the SMA elastic modulus, individually. The finite element harmonic analysis of a metamaterial unit-cell-chain model is further investigated to verify the effectiveness of vibration suppression and the variability of the stopband region from the frequency spectra and the equivalent stresses images. Finally, the experimental demonstration is performed to validate the numerical predication from a practical perspective. The proposed design may possess enabling application potentials for future active vibration control and noise isolation in engineering facilities.

Funder

Shanghai Rising-Star Program

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3