Predicting strain and stress fields in self-sensing nanocomposites using deep learned electrical tomography

Author:

Chen Liang,Hassan Hashim,Tallman Tyler NORCID,Huang Shan-Shan,Smyl DannyORCID

Abstract

Abstract Conductive nanocomposites, enabled by their piezoresistivity, have emerged as a new instrument in structural health monitoring. To this end, studies have recently found that electrical resistance tomography (ERT), a non-destructive conductivity imaging technique, can be utilized with piezoresistive nanocomposites to detect and localize damage. Furthermore, by incorporating complementary optimization protocols, the mechanical state of the nanocomposites can also be determined. In many cases, however, such approaches may be associated with high computational cost. To address this, we develop deep learned frameworks using neural networks to directly predict strain and stress distributions—thereby bypassing the need to solve the ERT inverse problem or execute an optimization protocol to assess mechanical state. The feasibility of the learned frameworks is validated using simulated and experimental data considering a carbon nanofiber plate in tension. Results show that the learned frameworks are capable of directly and reliably predicting strain and stress distributions based on ERT voltage measurements.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3