Abstract
Abstract
Conductive nanocomposites, enabled by their piezoresistivity, have emerged as a new instrument in structural health monitoring. To this end, studies have recently found that electrical resistance tomography (ERT), a non-destructive conductivity imaging technique, can be utilized with piezoresistive nanocomposites to detect and localize damage. Furthermore, by incorporating complementary optimization protocols, the mechanical state of the nanocomposites can also be determined. In many cases, however, such approaches may be associated with high computational cost. To address this, we develop deep learned frameworks using neural networks to directly predict strain and stress distributions—thereby bypassing the need to solve the ERT inverse problem or execute an optimization protocol to assess mechanical state. The feasibility of the learned frameworks is validated using simulated and experimental data considering a carbon nanofiber plate in tension. Results show that the learned frameworks are capable of directly and reliably predicting strain and stress distributions based on ERT voltage measurements.
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献