Author:
Chang Yifan,Wang Chang,Wang Yubo,Long Zhaonan,Zeng Zirui,Tian Youwei
Abstract
Abstract
The collision of high-energy electron and laser pulses produces nonlinear inverse Thomson scattering, which can generate γ-rays. We study the effect of laser intensity on the energy angular distribution and spectrum of γ-ray radiation in tightly focused pulses. The γ-rays at non-relativistic intensity have good collimation and monochromaticity, and the radiation energy increases with the laser intensity. The ‘jumping point’ phenomenon of radiation energy variation under relativistic intensity and the ‘black hole’ of energy angular distribution were discovered. As the laser intensity increases, there is a red shift in the radiative harmonic spectrum. And at relativistic intensity, supercontinuum (tunable) γ-rays can be obtained. These findings help us use NITS for optical research.
Subject
Physics and Astronomy (miscellaneous),Instrumentation