High-precision tomography of ion qubits based on registration of fluorescent photons

Author:

Bogdanov Yu IORCID,Dmitriev I AORCID,Bantysh B IORCID,Bogdanova N AORCID,Lukichev V FORCID

Abstract

Abstract We develop a new method for high-precision tomography of ion qubit registers under conditions of limited distinguishability of logical states. It is not always possible to achieve low error rates during the readout of the quantum states of ion qubits due to the finite lifetime of excited levels, photon scattering, detector dark counts, low numerical aperture, etc. However, the model of fuzzy quantum measurements makes it possible to ensure precise tomography of quantum states. To do this, we developed a fuzzy measurement model based on counting the number of fluorescent photons. A statistically adequate algorithm for the reconstruction of quantum states of ion qubit registers based on fuzzy measurement operators is proposed. The algorithm uses the complete information available in the experiment and makes it possible to account for systematic measurement errors associated with the limited distinguishability of the logical states of ion qubits. We show that the developed model, although computationally more complex, contains significantly more information about the state of the qubit and provides a higher accuracy of state reconstruction compared to the model based on the threshold algorithm.

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous),Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3