Author:
Kalashnikov V L,Wabnitz S
Abstract
Abstract
In this work, we introduce a method for the stabilization of spatiotemporal (ST) solitons. These solitons correspond to light bullets in multimode optical fiber lasers, energy-scalable waveguide oscillators and amplifiers, localized coherent patterns in Bose–Einstein condensates, etc. We show that a three-dimensional confinement potential, formed by a spatial transverse (radial) parabolic graded refractive index and dissipation profile, in combination with quadratic temporal phase modulation, may permit the generation of stable ST dissipative solitons. This corresponds to combining phase mode-locking with the distributed Kerr-lens mode-locking. Our study of the soliton characteristics and stability is based on analytical and numerical solutions of the generalized dissipative Gross–Pitaevskii equation. This approach could lead to higher energy (or condensate mass) harvesting in coherent spatio-temporal beam structures formed in multimode fiber lasers, waveguide oscillators, and weakly-dissipative Bose–Einstein condensates.
Subject
Physics and Astronomy (miscellaneous),Instrumentation
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献