Tunable single-longitudinal-mode narrow linewidth Brillouin fiber laser based on PT symmetry

Author:

Tao Liuyuan,Wang Fei,Xia Guangqiong,Wu Zhengmao

Abstract

Abstract A tunable single-longitudinal-mode (SLM) narrow linewidth Brillouin fiber laser based on parity-time (PT) symmetry is proposed and experimentally demonstrated. In the proposed scheme, the dual selecting-mode mechanism is employed to achieve the SLM operation. The first, a narrow-band gain curve induced by stimulated Brillouin scattering (SBS) can be acted as a filter for selecting mode preliminary in the fiber ring cavity. The second, a PT-symmetric structure is formed by using a Sagnac loop, in which by adjusting a single polarization controller, the PT symmetry can be broken, resulting in the SLM oscillation. The SBS effect can be further beneficial to the linewidth narrowing. Using the proposed scheme, the SLM lasing with an optical signal to noise ratio of 50.1 dB and an ultra-narrow linewidth of 300 Hz at 1547.90 nm is obtained. Compared with the original linewidth of pump laser, the linewidth-reduction ratio can be up to 680 times. The available wavelength ranges from 1528.4 to 1563.4 nm, covering 35 nm. The key advantage of the proposed laser is that by constructing a simple Sagnac loop, the SLM selection based on PT symmetry and linewidth narrowing benefiting from SBS effect are accomplished simultaneously. Moreover, it is worth noting that the wavelength tunability is virtually unrestricted, only depending on the pump wavelength.

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous),Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3