Author:
Zhang Hengfei,Yuan Jinpeng,Wu Chaohua,Wang Lirong,Xiao Liantuan,Jia Suotang
Abstract
Abstract
We propose a scheme for subwavelength three-dimensional (3D) Rydberg atom localization in a (V + Ξ)-type atomic system by spatial optical absorption microscopy. Position-dependent atom–field interaction allows atom position information to be obtained via measurement of the probe absorption. Some distinctive spatial localization patterns are discovered by adjusting the detuning and Rabi frequency of the laser fields. A 100% probability of finding the Rydberg atom at a specific position in 3D subwavelength space is achieved under appropriate conditions. This scheme may provide a novel approach for realizing high-precision 3D Rydberg atom localization in experiment.
Subject
Physics and Astronomy (miscellaneous),Instrumentation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献