Photon counting based pump-probe technique for quantitative characterization of fluorescence in a lock-in free detection manner

Author:

Rehman Khalil Ur,Das Subir,Kao Fu-Jen

Abstract

Abstract The stimulated emission (SE) signal in pump-probe experiment is conventionally measured with lock-in detection to differentiate the weak signals from the relatively large background of spontaneous emission and probe beam. Therefore, direct characterization of signal strength are often major limiting factors in terms of noise, speed, and data acquisition. In contrast, photon counting allows direct quantification of signal strength, while synchronized pump-probe pulse enables precise timing and the separation of signals accordingly. Herein, the SE based pump-probe method is combined with time-correlated single-photon counting to investigate the ultrafast photochemical parameters, digitally and quantitatively. As a proof-of-concept, our technique is applied to investigate, fluorescence lifetime ( τ ) 3.71 ns , optical absorption cross-section ( σ abs ) 1.23 × 10 16 c m 2 , and the SE cross-section ( σ SE ) 2.22 × 10 17 c m 2 , of a fluorescent dye (ATTO 647N) quantitatively. The experimental results are also compared with theoretical photon statistics to further justify the advantages including experimental and statistical critical molecular dynamics parameters extraction with excellent high accuracy.

Publisher

IOP Publishing

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3