Molten fluoride salt-assisted synthesis of titanium carbide (Ti2C) MXene and its application for 2 µm mode-locking in a thulium-doped fiber laser

Author:

Ahmad Harith,Kamely Aizuddin Ahmad,Samion Muhamad Zharif,Nizamani Bilal,Reduan Siti Aisyah,Thambiratnam Kavintheran

Abstract

Abstract Titanium carbide (Ti2C), a new two-dimensional material named MXenes, has attracted interest due to its potential applications in numerous fields. Of the many unique characteristics of Ti2C MXene, its nonlinear properties are attractive for optoelectronic applications, specifically for ultrafast laser generation. In this work, a Ti2C MXene was fabricated by etching a MAX phase precursor titanium aluminum carbide (Ti2AlC) using a mixture of lithium fluoride and hydrochloric acid, eliminating the risk of using the harmful hydrofluoric acid. The Ti2C MXene was prepared in solution form and then dropped onto a reduced core diameter of tapered fiber before being used as a saturable absorber (SA). The SA device was inserted into a thulium-doped fiber laser to generate stable mode-locked pulses at a center wavelength of 1951 nm with a pulse width of 1.67 ps. The mode-locked laser was highly stable when tested over time, with peak optical power fluctuations of as little as 0.005 dB measured. The results show that the Ti2C MXene exhibit outstanding performance for ultrafast laser generation.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3