Laser processing characteristics of PCD tool and modeling analysis

Author:

Tan Ruiwang,Wang Xu,Yu Zhanjiang,Shi Guangfeng,Yang Shen,Li Yiquan,Xu Jinkai

Abstract

Abstract Through in-depth analysis of the experimental details and forming patterns of the nanosecond laser ablation polycrystalline diamond (PCD) textured tool processing system, this study explores the microscopic morphology and dimensions of micro-pits texture on the surface of PCD tools influenced by defocus amount, laser power, and pulse frequency. Experimental results indicate that the micro-pit textures generated under different parameters exhibit diversity, including rounded structure, fragments, recast layers, and heat-affected zones. The diameter and depth of micro-pits are comprehensively affected by defocus amount, laser power, and pulse frequency, showing complex patterns. After a thorough analysis of the effects of each parameter on the texture morphology, an artificial neural network (ANN) model is introduced for the prediction of micro-pit dimensions. Through model training and optimization, accurate predictions of micro-pit diameter and depth are obtained. In comparison to traditional regression models, the ANN model demonstrates outstanding predictive performance, validating its applicability in complex machining processes. This study not only provides a profound understanding of the processing patterns of PCD textured tools but also offers an effective predictive model for the optimization and control of similar future machining processes.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3