Author:
Zhu Lei,Wang Yun,Li Haodong,Rong Miaoxin,Dong Liang
Abstract
Abstract
In this study, we design an electromagnetically induced transparency (EIT) effect based on a metamaterial sensor composed of three split-ring structures in the terahertz range. The EIT transparency window appears at 1.83 THz due to the electromagnetic coupling between the three split-rings. To analyze its physical mechanism, we use the ‘two-particle’ model and obtain good consistency between the simulation and theoretical results. The simulation results also show that when the thickness of the measured object is 15 μm and the refractive index is between 1 and 1.5, the refractive index sensitivity of the sensor is as high as 423.9 GHz RIU−1, and the figure of merit value is 6.9. In addition, the sensor is used to simulate the detection and distinction of different types of microbiota. We expect that this work will pave the way for designing high-sensitivity EIT sensors in the terahertz region and promote the development of terahertz sensing and label-free detection of pathogens.
Subject
Industrial and Manufacturing Engineering,Condensed Matter Physics,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献