Investigation of thermal effect on the output characteristics of end-pumped Ho:YLF laser in concave–concave and concave–convex resonators

Author:

Tooski Majid Babaiy,Maleki Abbas,Ebadian Hassan,Zamani Majid,nejhad Hamid Salmani

Abstract

Abstract The thermal effect on the output characteristics was analyzed in an end-pumped Ho:YLF laser by applying the Kirchhoff integral analytic solution and finite element analysis using LASCAD software. At a Tm:fiber laser power of 70 W, the maximum temperature of a Ho:YLF crystal with 8 mm diameter was found to be 297.6 K. The temperature distribution results of the two calculation methods were matched with an acceptable error. The calculated thermal lens focal length for the maximum power was −985 and −976 mm in the 3 and 8 mm diameter rods, respectively. The simulation results showed that for the larger diameter crystal, the thermal lens effect is less. Moreover, in this study, the calculation results were validated as experimental results. A focal length of the thermal lens of −1012.6 ± 101.26 mm at double-pass pumping was measured. The experimental study showed that laser characteristics such as the far-field divergence angle were improved in the concave–convex resonator with 0.5% Ho:YLF crystal. The experimentally measured divergence angle was 0.7 mrad, which confirms the simulation results. The output power was 13.5 W, corresponding to 19.3% optical-to-optical efficiency.

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering,Condensed Matter Physics,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3