Author:
Xing Dengke,He Jiangyong,Wang Pan,Guo Huiyi,Chang Kun,Liu Congcong,Liu Yange,Wang Zhi
Abstract
Abstract
Comparing with fused silica fiber, chalcogenide glass fibers are considered as an ideal platform for mid-infrared supercontinuum generation (SCG) because of its higher nonlinear coefficient and wider transparency window. Multimode fiber provides a new way to achieve special spectral characteristics in SCG by introducing intermodal interaction. We investigate the intermodal nonlinear phenomena associated with SCG in multimode chalcogenide fiber by numerically solving multimode generalized nonlinear Schrödinger equation. The results indicate that when the phase matching condition is satisfied, the intermodal interaction leads to the generation of dispersive waves at mid-infrared wavelength. Furthermore, intermodal and intramodal soliton collision are observed, and the bandwidth of the supercontinuum is increased by the intermodal interaction. These results may provide a new way for the generation of mid-infrared supercontinuum light source.
Subject
Industrial and Manufacturing Engineering,Condensed Matter Physics,Instrumentation,Atomic and Molecular Physics, and Optics