High power narrow linewidth fiber laser based on superfluorescent white noise modulation

Author:

Shan X,Hou T,Li F,Zhu R

Abstract

Abstract High power narrow linewidth fiber lasers have important applications in the fields of national defense, military and industrial intelligent manufacturing. At present, the power enhancement of narrow linewidth lasers is limited by the nonlinear and thermal effects of fiber, among which the stimulated Brillouin scattering (SBS) effect is highly destructive due to its low threshold. The SBS effect is easily produced using a single frequency laser as the seed of a high power narrow linewidth laser directly. The Brillouin scattering threshold can be effectively increased by broadening the spectrum line at a single frequency. A spectral broadening technique for single frequency lasers based on superfluorescent white noise modulation was proposed. The broadband characteristics of the amplified spontaneous emission light source to generate noise voltage on the photodetector was employed, and the lithium niobate electro-optical modulator was driven to perform broadband phase modulation in a single frequency laser. The phase modulation broadening of the single frequency laser was carried out using superfluorescent white noise. Different linewidth broadening effects of single frequency lasers were realized by changing the amplitude of the white noise. An experimental platform of the four-stage main oscillation power amplification structure was built, and a high power narrow linewidth laser with output power of 2 kW and spectral linewidth of 0.15 nm (10 dB) was realized, which effectively inhibited the SBS effect of the laser.

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering,Condensed Matter Physics,Instrumentation,Atomic and Molecular Physics, and Optics

Reference23 articles.

1. The medical laser Der Laser in der MedizinEl láser en medicina;Muller;Med. Laser Appl.,2006

2. High power CW fiber lasers;IPG Photonics

3. Laser marking with fiber lasers;Hoult;Ind. Laser Sol.,2012

4. High power fiber lasers: a review;Zervas;IEEE J. Quantum Electron.,2014

5. High power fiber lasers: current status and future perspective;Richardson;J. Opt. Soc. Am. B,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3