Compact entanglement concentration for three-electron-spin W states with error-detected parity-check gates

Author:

Fan Gang,Ren Xue-Mei,Fang-Fang Du

Abstract

Abstract We present a compact entanglement concentration protocol (ECP) for unknown less-entangled three-electron-spin W states, resorting to the interaction rules between the circularly polarized photon and cavity-quantum-dot (QD) system. In the first step of our ECP, the parties utilize two less-entangled three-electron-spin systems not only to obtain one partially entangled three-electron-spin system with two unknown parameters if the odd-parity occurs with the parity-check gate (PCG) but also to get one entangled two-electron-spin system if the even-parity occurs. By exploiting the above three-electron-spin and two-electron-spin systems as the resource for the second step of our ECP, the parties can obtain a standard three-electron-spin W state if the odd parity occurs. Meanwhile, the systems in the even-parity instance can be used as the resource in the next round of our ECP. As the imperfect performances originated from the side leakage and the limited coupling strength of the cavity-QD system can be reflected by clicking the single-photon detectors, the fidelity of the PCG is unit, in principle, immune to strong coupling-strength restriction. Moreover, the success of our ECP not only is heralded by the detectors but also its efficiency further is improved by repeating the operation processes. Therefore, our ECP is useful in the quantum communication network.

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering,Condensed Matter Physics,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3