Modification of the roughness of 304 stainless steel by laser surface texturing (LST)

Author:

Lazov LyubomirORCID,Teirumnieks EdmundsORCID,Angelov NikolayORCID,Yankov EmilORCID

Abstract

Abstract Surface texturing is one of the most effective approaches to modifying the surface to improve many properties: tribological, corrosion resistance, microhardness and others characteristics of a number of engineering materials. Among the surface texturing techniques developed in recent years, the most widely used method is the laser surface texturing method (LST) due to its high flexibility, superior texturing accuracy and good process controllability and reproducibility. With its rapid development, LST has attracted considerable attention in various industries such as automotive, biomedical and aerospace. The present study considers the changes in roughness in different modes of laser texturing of stainless steel specimens 304. The effects and role of individual laser parameters on the change in roughness are analyzed as a main characteristic of the surface properties of the processed material. Heating and its surface melting is one of the studied effects and its role in changing the roughness. The focus of the study is on the process of laser–material interaction as a function of absorbed energy density, pulse frequency, scan rate, and overlap coefficients leading to different effects of LST parameters. It has been found that increasing the energy density, accompanied by a decrease in the frequency and speed of scanning, can increase the surface roughness.

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering,Condensed Matter Physics,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3