Abstract
Abstract
We present an efficient two-dimensional atomic localization in a tripod-type four-level atomic medium using standing-wave fields. The localization behavior is significantly
improved, and the maximum localization probability can be achieved under suitable conditions within the one-wavelength domain. Multiple sharp localized peaks are observed in the one-wavelength domain through examination of the absorption of the weak probe field, and theoretically, high-resolution and high-precision atomic localization can be achieved within a region smaller than λ/12 × λ/12, via the exploitation of quantum-coherence effects in laser–matter interactions. The spatial resolution of the atomic localization is extensively improved, compared to the cases with or without microwave fields studied previously. We believe that the results revealed here might have potential applications for atomic nanolithography, neutral-atom laser cooling and trapping, Bose–Einstein condensation and the center-of-mass wave-function measurements.
Subject
Industrial and Manufacturing Engineering,Condensed Matter Physics,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献