Author:
Zhang Yong,Wang Qiuyun,Chen Anmin,Gao Xun
Abstract
Abstract
This study explored the characteristics of atomic and molecular emissions in Al plasmas generated by femtosecond lasers. The influence of laser pulse energy on Al atoms and AlO molecules time-integrated spectra was examined. As laser pulse energy increased, the intensity of Al atoms increased, while the emission of AlO molecules first increased and then remained unchanged. Secondly, the vibration temperature of AlO was determined and found to result in strong emission at a low temperature. Finally, the influence of laser pulse energy on the time-resolved spectra of Al atom and AlO molecule was explored, finding consistency with the time-integrated emission. These results indicate that the Al atom and AlO molecule have different sensitivities to femtosecond laser pulse energy. This research enriches our knowledge of femtosecond laser-plasma interactions and has potential applications in material processing and spectroscopic analysis.
Subject
Industrial and Manufacturing Engineering,Condensed Matter Physics,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献