Abstract
Abstract
Salt marshes have the ability to store large amounts of ‘blue carbon’, potentially mitigating some of the effects of climate change. Salt marsh carbon storage may be partially offset by emissions of CH4, a highly potent greenhouse gas. Sea level rise and invasive vegetation may cause shifts between different elevation and vegetation zones in salt marsh ecosystems. Elevation zones have distinct soil properties, plant traits and rhizosphere characteristics, which affect CH4 fluxes. We investigated differences in CH4 emissions between four elevation zones (mudflat, Spartina alterniflora, Spartina patens and invasive Phragmites australis) typical of salt marshes in the northern Northwest Atlantic. CH4 emissions were significantly higher from the S. alterniflora zone (17.7 ± 9.7 mg C m−2h−1) compared to the other three zones, where emissions were negligible (<0.3 mg C m−2h−1). These emissions were high for salt marshes and were similar to those typically found in oligohaline marshes with lower salinities. CH4 fluxes were significantly correlated with soil properties (salinity, water table depth, bulk density and temperature), plant traits (rhizome volume and biomass, root volume and dead biomass volume all at 0–15 cm) and CO2 fluxes. The relationships between CH4 emissions, and rhizome and root volume suggest that the aerenchyma tissues in these plants may be a major transport mechanism of CH4 from anoxic soils to the atmosphere. This may have major implications for the mitigation potential carbon sink from salt marshes globally, especially as S. alterniflora is widespread. This study shows CH4 fluxes can vary over orders of magnitude from different vegetation in the same system, therefore, specific emissions factors may need to be used in future climate models and for more accurate carbon budgeting depending on vegetation type.
Funder
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
Natural Environment Research Council
Horizon 2020 Framework Programme
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献