Climate change effects on understory plant phenology: implications for large herbivore forage availability

Author:

Brown Casey LORCID,Coe Priscilla K,Clark Darren A,Wisdom Michael J,Rowland Mary M,Averett Joshua P,Johnson Bruce K

Abstract

Abstract Consistent with a warming climate, the timing of key phenological phases (i.e. phenophases) for many plant species is shifting, but the direction and extent of these shifts remain unclear. For large herbivores such as ungulates, altered plant phenology can have important nutritional and demographic consequences. We used two multi-year datasets collected during 1992–1996 and 2015–2019 of understory plant phenology in semi-arid forested rangelands in northeastern Oregon, United States, to test whether the duration of phenophases for forage species has changed over time for three plant functional groups (forbs, graminoids, and shrubs). Duration of spring green-up was approximately 2 weeks shorter in the later years for forbs (19 ± 3.8 d) and graminoids (13.2 ± 2.8 d), and senescence was 3 weeks longer for graminoids (25.1 ± 5.1) and shrubs (22.0 ± 4.6). Average peak flowering date was 3.1 ± 0.2 d earlier per decade for understory forage species with approximately 1/3 of the species (35%) exhibiting earlier peak flowering dates over time. Variation in late-winter precipitation had the greatest effect on the duration of understory green-up, whereas variation in summer precipitation had a greater effect on duration of the senescent period. Collectively, these results indicate climate-related progression towards shorter periods of peak plant productivity, and earlier and longer periods of plant senescence, the combination of which substantially reduces the temporal window of forage available in growing forms most usable to herbivores. This work adds a needed component to the climate change literature, by describing links between shifting climate variables, multiple phases of understory plant phenology, and possible nutritional consequences for herbivores under a warming climate.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3