Review of linear and nonlinear models in breath analysis by Cyranose 320

Author:

Arrieta MaryanORCID,Swanson Barbara,Fogg Louis,Bhushan AbhinavORCID

Abstract

Abstract Analysis of volatile organic compounds (VOCs) in breath specimens has potential for point of care (POC) screening due to ease of sample collection. While the electronic nose (e-nose) is a standard VOC measure across a wide range of industries, it has not been adopted for POC screening in healthcare. One limitation of the e-nose is the absence of mathematical models of data analysis that yield easily interpreted findings at POC. The purposes of this review were to (1) examine the sensitivity/specificity results from studies that analyzed breath smellprints using the Cyranose 320, a widely used commercial e-nose, and (2) determine whether linear or nonlinear mathematical models are superior for analyzing Cyranose 320 breath smellprints. This systematic review was conducted according to the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analyses using keywords related to e-nose and breath. Twenty-two articles met the eligibility criteria. Two studies used a linear model while the rest used nonlinear models. The two studies that used a linear model had a smaller range for mean of sensitivity and higher mean (71.0%–96.0%; M = 83.5%) compared to the studies that used nonlinear models (46.9%–100%; M = 77.0%). Additionally, studies that used linear models had a smaller range for mean of specificity and higher mean (83.0%–91.5%; M = 87.2%) compared to studies that used nonlinear models (56.9%–94.0%; M = 76.9%). Linear models achieved smaller ranges for means of sensitivity and specificity compared to nonlinear models supporting additional investigations of their use for POC testing. Because our findings were derived from studies of heterogenous medical conditions, it is not known if they generalize to specific diagnoses.

Publisher

IOP Publishing

Subject

Pulmonary and Respiratory Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3