Does exposure to inflammatory particles modify the pattern of anion in exhaled breath condensate?

Author:

Sauvain J-JORCID,Edmé J-L,Wild P,Suarez G,Bezerra O M P A,Talvani A,Algranti E,Carneiro A P S,Chérot-Kornobis N,Sobaszek A,Hulo S

Abstract

Abstract Exposure to environmental and occupational particulate matter (PM) induces health effects on the cardio-pulmonary system. In addition, associations between exposure to PM and metabolic syndromes like diabetes mellitus or obesity are now emerging in the literature. Collection of exhaled breath condensate (EBC) is an appealing non-invasive technique to sample pulmonary fluids. This hypothesis-generating study aims to (1) validate an ion chromatography method allowing the robust determination of different metabolism-related molecules (lactate, formate, acetate, propionate, butyrate, pyruvate, nitrite, nitrate) in EBC; (2) apply this method to EBC samples collected from workers exposed to quartz (a known inflammatory particle), to soapstone (a less inflammatory particle than quartz), as well as to controls. A multi-compound standard solution was used to determine the linearity range, detection limit, repeatability and bias from spiked EBC. The biological samples were injected without further treatment into an ion chromatograph with a conductivity detector. RTube® were used for field collection of EBC from 11 controls, 55 workers exposed to soapstone and 12 volunteers exposed to quartz dust. The analytical method used proved to be adequate for quantifying eight anions in EBC samples. Its sub-micromolar detection limits and repeatability, combined with a very simple sample preparation, allowed an easy and fast quantification of different glycolysis or nitrosative stress metabolites. Using multivariate discriminant analysis to maximize differences between groups, we observed a different pattern of anions with a higher formate/acetate ratio in the EBC samples for quartz exposed workers compared to the two other groups. We hypothesize that a modification of the metabolic signature could be induced by exposure to inflammatory particles like quartz and might be observed in the EBC via a change in the formate/acetate ratio.

Funder

Fundaçao de Amparo a Pesquisa do Estado de Minas Gerais

Action en Région de Coopération Universitaire et Scientifique

Publisher

IOP Publishing

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3