Machine learning enabled detection of COVID-19 pneumonia using exhaled breath analysis: a proof-of-concept study

Author:

Cusack Ruth PORCID,Larracy Robyn,Morrell Christian BORCID,Ranjbar Maral,Le Roux Jennifer,Whetstone Christiane E,Boudreau Maxime,Poitras Patrick F,Srinathan Thiviya,Cheng Eric,Howie Karen,Obminski Catie,O’Shea Tim,Kruisselbrink Rebecca J,Ho Terence,Scheme Erik,Graham Stephen,Beydaghyan Gisia,Gavreau Gail M,Duong MyLinh

Abstract

Abstract Detection of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) relies on real-time-reverse-transcriptase polymerase chain reaction (RT-PCR) on nasopharyngeal swabs. The false-negative rate of RT-PCR can be high when viral burden and infection is localized distally in the lower airways and lung parenchyma. An alternate safe, simple and accessible method for sampling the lower airways is needed to aid in the early and rapid diagnosis of COVID-19 pneumonia. In a prospective unblinded observational study, patients admitted with a positive RT-PCR and symptoms of SARS-CoV-2 infection were enrolled from three hospitals in Ontario, Canada. Healthy individuals or hospitalized patients with negative RT-PCR and without respiratory symptoms were enrolled into the control group. Breath samples were collected and analyzed by laser absorption spectroscopy (LAS) for volatile organic compounds (VOCs) and classified by machine learning (ML) approaches to identify unique LAS-spectra patterns (breathprints) for SARS-CoV-2. Of the 135 patients enrolled, 115 patients provided analyzable breath samples. Using LAS-breathprints to train ML classifier models resulted in an accuracy of 72.2%–81.7% in differentiating between SARS-CoV2 positive and negative groups. The performance was consistent across subgroups of different age, sex, body mass index, SARS-CoV-2 variants, time of disease onset and oxygen requirement. The overall performance was higher than compared to VOC-trained classifier model, which had an accuracy of 63%–74.7%. This study demonstrates that a ML-based breathprint model using LAS analysis of exhaled breath may be a valuable non-invasive method for studying the lower airways and detecting SARS-CoV-2 and other respiratory pathogens. The technology and the ML approach can be easily deployed in any setting with minimal training. This will greatly improve access and scalability to meet surge capacity; allow early and rapid detection to inform therapy; and offers great versatility in developing new classifier models quickly for future outbreaks.

Funder

Department of National Defence, Government of Canada

Publisher

IOP Publishing

Reference46 articles.

1. Weekly epidemiological update on COVID-19–15 February 2023;WHO,2022

2. Estimating infectiousness throughout SARS-CoV-2 infection course;Jones;Science,2021

3. Living guidance for clinical management of COVID-19: v4.1;WHO,2022

4. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia;Chu;Clin. Chem.,2020

5. Variation in false-negative rate of reverse transcriptase polymerase chain reaction–based SARS-CoV-2 tests by time since exposure;Kucirka;Ann. Intern. Med.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3