Infrared cavity ring-down spectroscopy for detecting non-small cell lung cancer in exhaled breath

Author:

Larracy RobynORCID,Phinyomark AngkoonORCID,Scheme ErikORCID

Abstract

Abstract Early diagnosis of lung cancer greatly improves the likelihood of survival and remission, but limitations in existing technologies like low-dose computed tomography have prevented the implementation of widespread screening programs. Breath-based solutions that seek disease biomarkers in exhaled volatile organic compound (VOC) profiles show promise as affordable, accessible and non-invasive alternatives to traditional imaging. In this pilot work, we present a lung cancer detection framework using cavity ring-down spectroscopy (CRDS), an effective and practical laser absorption spectroscopy technique that has the ability to advance breath screening into clinical reality. The main aims of this work were to (1) test the utility of infrared CRDS breath profiles for discriminating non-small cell lung cancer (NSCLC) patients from controls, (2) compare models with VOCs as predictors to those with patterns from the CRDS spectra (breathprints) as predictors, and (3) present a robust approach for identifying relevant disease biomarkers. First, based on a proposed learning curve technique that estimated the limits of a model’s performance at multiple sample sizes (10–158), the CRDS-based models developed in this work were found to achieve classification performance comparable or superior to like mass spectroscopy and sensor-based systems. Second, using 158 collected samples (62 NSCLC subjects and 96 controls), the accuracy range for the VOC-based model was 65.19%–85.44% (51.61%–66.13% sensitivity and 73.96%–97.92% specificity), depending on the employed cross-validation technique. The model based on breathprint predictors generally performed better, with accuracy ranging from 71.52%–86.08% (58.06%–82.26% sensitivity and 80.21%–88.54% specificity). Lastly, using a protocol based on consensus feature selection, three VOCs (isopropanol, dimethyl sulfide, and butyric acid) and two breathprint features (from a local binary pattern transformation of the spectra) were identified as possible NSCLC biomarkers. This research demonstrates the potential of infrared CRDS breath profiles and the developed early-stage classification techniques for lung cancer biomarker detection and screening.

Funder

New Brunswick Innovation Foundation

Mitacs

Publisher

IOP Publishing

Subject

Pulmonary and Respiratory Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3