Abstract
Abstract
Exhaled breath research has been hindered by a lack of standardization in collection and analysis methodologies. Recently, the Respiration Collector for In Vitro Analysis (ReCIVA) sampling device has illustrated the potential to provide a consistent and convenient method for exhaled breath collection onto adsorbent media. However, the significant costs, compared to exhaled breath bags, associated with the standardized collector is believed to be the reason for limited widespread use by researchers in the exhaled breath field. For example, in addition to the sampling hardware, a single-use disposable silicon mask affixed with a filter is required for each exhaled breath collection. To reduce the financial burden, streamline device upkeep, reduce waste material, and ease the logistical burden associated with the single use masks, it is hypothesized that the consumable masks and filters could be sterilized by autoclaving for reuse. The masks were contaminated, autoclaved, and then tested for any surviving pathogens with spore strip standards and by measuring the optical density of cultures. The compound background collected when using the ReCIVA with new masks was compared to that collected with repeatedly autoclaved masks via thermal desorption gas chromatography mass spectrometry (TD-GC-MS). The capacity to block particulate matter of new filters was tested against that of autoclaved filters by introducing an aerosol and comparing pre-filter and post-filter particle counts. Finally, breath samplings were conducted with new masks and autoclaved masks to test for changes in measurements by TD-GC-MS of exogenous and endogenous compounds. The data illustrate the autoclave cycle sterilizes masks spiked with saliva to background levels (p = 0.2527). The results indicate that background levels of siloxane compounds are increased as masks are repetitively autoclaved. The data show that mask filters have significant breakthrough of 1 μm particles after five repetitive autoclaving cycles compared to new filters (p = 0.0219). Finally, exhaled breath results utilizing a peppermint ingestion protocol indicate two compounds associated with peppermint, menthone and 1-Methyl-4-(1-methylethyl)-cyclohexanol, and an endogenous exhaled breath compound, isoprene, show no significant difference if sampled with a new mask or a mask autoclaved five times (p > 0.1063). Collectively, the data indicate that ReCIVA masks and filters can be sterilized via autoclave and reused. The results suggest ReCIVA mask and filter reuse should be limited to three times to limit potentially problematic background contaminants and filter dysfunction.
Subject
Pulmonary and Respiratory Medicine