The optimization and comparison of two high-throughput faecal headspace sampling platforms: the microchamber/thermal extractor and hi-capacity sorptive extraction probes (HiSorb)

Author:

van Vorstenbosch RobertORCID,Mommers Alex,Pachen Daniëlle,van Schooten Frederik-Jan,Smolinska AgnieszkaORCID

Abstract

Abstract Disease detection and monitoring using volatile organic compounds (VOCs) is becoming increasingly popular. For a variety of (gastrointestinal) diseases the microbiome should be considered. As its output is to large extent volatile, faecal volatilomics carries great potential. One technical limitation is that current faecal headspace analysis requires specialized instrumentation which is costly and typically does not work in harmony with thermal desorption units often utilized in e.g. exhaled breath studies. This lack of harmonization hinders uptake of such analyses by the Volatilomics community. Therefore, this study optimized and compared two recently harmonized faecal headspace sampling platforms: High-capacity Sorptive extraction (HiSorb) probes and the Microchamber thermal extractor (Microchamber). Statistical design of experiment was applied to find optimal sampling conditions by maximizing reproducibility, the number of VOCs detected, and between subject variation. To foster general applicability those factors were defined using semi-targeted as well as untargeted metabolic profiles. HiSorb probes were found to result in a faster sampling procedure, higher number of detected VOCs, and higher stability. The headspace collection using the Microchamber resulted in a lower number of detected VOCs, longer sampling times and decreased stability despite a smaller number of interfering VOCs and no background signals. Based on the observed profiles, recommendations are provided on pre-processing and study design when using either one of both platforms. Both can be used to perform faecal headspace collection, but altogether HiSorb is recommended.

Funder

KWF Kankerbestrijding

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3