Optimization of volatile organic compounds sampling from dairy cow exhaled breath using polymer-based solid-phase extraction cartridges for gas chromatographic analysis

Author:

Eichinger Julia,Reiche Anna-Maria,Dohme-Meier Frigga,Fuchsmann PascalORCID

Abstract

Abstract We explored appropriate technical setups for the detection of volatile organic compounds (VOCs) from exhaled cow breath by comparing six different polymer-based solid-phase extraction (SPE) cartridges currently on the market for gas chromatography/mass spectrometry (GC-MS) screening. Exhaled breath was sampled at a single timepoint from five lactating dairy cows using six different SPE cartridges (Bond Elut ENV (ENV); Chromabond HRX (HRX); Chromabond HRP (HRP); Chromabond HLB (HLB); Chromabond HR-XCW (XCW) and Chromabond HR-XAW (XAW)). The trapped VOCs were analyzed by dynamic headspace vacuum in-tube extraction GC-MS (DHS-V-ITEX-GC-MS). Depending on the SPE cartridge, we detected 1174–1312 VOCs per cartridge. Most VOCs were alkenes, alkanes, esters, ketones, alcohols, aldehydes, amines, nitriles, ethers, amides, carboxylic acids, alkynes, azoles, terpenes, pyridines, or sulfur-containing compounds. The six SPE cartridges differed in their specificity for the chemical compounds, with the XAW cartridge showing the best specificity for ketones. The greatest differences between the tested SPE cartridges appeared in the detection of specific VOCs. In total, 176 different VOCs were detected with a match factor >80%. The greatest number of specific VOCs was captured by XAW (149), followed by ENV (118), HLB (117), HRP (115), HRX (114), and XCW (114). We conclude that the tested SPE cartridges are suitable for VOC sampling from exhaled cow breath, but the SPE cartridge choice enormously affects the detected chemical groups and the number of detected VOCs. Therefore, an appropriate SPE adsorbent cartridge should be selected according to our proposed inclusion criteria. For targeted metabolomics approaches, the SPE cartridge choice depends on the VOCs or chemical compound groups of interest based on our provided VOC list. For untargeted approaches without information on the animals’ metabolic condition, we suggest using multi-sorbent SPE cartridges or multiple cartridges per animal.

Publisher

IOP Publishing

Reference37 articles.

1. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva;Amann;J. Breath Res.,2014

2. Development of an analytical technique and stability evaluation of 143 C3-C12 volatile organic compounds in Summa canisters by gas chromatography-mass spectrometry;Sin;Analyst,2001

3. Animal science meets agricultural practice: preliminary results of an innovative technical approach for exhaled breath analysis in cattle under field conditions;Küntzel;Berliner Munchener Tierarztliche Wochenschrift,2018

4. Breath analysis: comparison among methodological approaches for breath sampling;Di Gilio;Molecules,2020

5. The peppermint breath test: a benchmarking protocol for breath sampling and analysis using GC-MS;Wilkinson;J. Breath Res.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3