Algebraic stability modes in rotational shear flow

Author:

Gebler T,Plümacher DORCID,Kahle J,Oberlack M

Abstract

Abstract We investigate the two-dimensional (2D) stability of rotational shear flows in an unbounded domain. The eigenvalue problem is formulated by using a novel algebraic mode decomposition distinct from the normal modes with temporal evolution exp ( ω t ) . Based on the work of Nold and Oberlack (2013 Phys. Fluids 25 104101), we show how these new modes can be constructed from the symmetries of the linearized stability equation. For the azimuthal base flow velocity V ( r ) = r 1 an additional symmetry exists, such that a mode with algebraic temporal evolution t s is found. s refers to an eigenvalue for the algebraic growth or decay of the kinetic energy of the perturbations. An eigenvalue problem for the viscous and inviscid stability using algebraic modes is formulated on an infinite domain with r . An asymptotic analysis of the eigenfunctions shows that the flow is linearly stable under 2D perturbations. We find stable modes with the algebraic mode ansatz, which can not be obtained by a normal mode analysis. The stability results are in line with Rayleigh’s inflection point theorem.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3