Transient slow motion of a porous sphere

Author:

Yu Chan W,Keh Huan JORCID

Abstract

Abstract The start-up creeping motion of a porous spherical particle, which models a permeable polymer coil or floc of nanoparticles, in an incompressible Newtonian fluid generated by the sudden application of a body force is investigated for the first time. The transient Stokes and Brinkman equations governing the fluid velocities outside and inside the porous sphere, respectively, are solved by using the Laplace transform. An analytical formula for the transient velocity of the particle as a function of relevant parameters is obtained. As expected, the particle velocity increases over time, and a particle with greater mass density lags behind a corresponding less dense particle in the growth of the particle velocity. In general, the transient velocity is an increasing function of the porosity of the particle. On the other hand, a porous particle with a higher fluid permeability will have a greater transient velocity than the same particle with a lower permeability, but may trail behind the less permeable particle in the percentage growth of the velocity. The acceleration of the porous particle is a monotonic decreasing function of the elapsed time and a monotonic increasing function of its fluid permeability. In particular, the transient behavior of creeping motions of porous particles may be much more important than that of impermeable particles.

Funder

National Science and Technology Council

Publisher

IOP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3