Hydrodynamic force and wave run-up due to diffraction of ocean water waves by a surface-piercing bottom-mounted compound partial-porous cylinder

Author:

Sarkar Abhijit,Bora Swaroop NandanORCID

Abstract

Abstract Here we consider the case of a train of linear water waves incident on a bottom-mounted surface-piercing compound partial-porous cylinder consisting of two coaxial cylinders of which the upper cylinder is hollow with a thin porous side wall and the lower cylinder, with radius greater than that of the upper one, is rigid. Subsequently, we examine the associated hydrodynamic forces. Using linear water wave theory and eigenfunction expansion, the problem is developed in terms of suitable velocity potentials. The important boundary condition on the porous boundary is defined with the aid of Darcy’s law. The matching conditions across the linear interface between successive fluid domains arising due the continuity of pressure and velocity are suitably used. Thereafter, a system of linear equations arises in terms of the unknowns solving which the hydrodynamic force and wave run-up for the compound partial-porous cylinder are calculated. Various numerical experiments show the effect of different parameters, such as porosity of the upper cylinder, draft ratio, the ratio of radii of the upper and lower cylinders and the depth of water on hydrodynamic force and wave run-up. It is observed that the wave force takes higher values corresponding to lower values of radius ratio, draft and porous coefficients. Further, for fixed values of radii, porosity and depth, the wave run-up is observed to be more when the wavenumber takes increasing values. The obtained results establish that different parameters may be suitably chosen in order to design useful ocean structures which may be installed as wave-absorbers for various activities in ocean including capturing of wave energy. Further, such structures can also act as the base of windmills installed in oceans to extract wind energy. The efficiency of the model developed is validated by comparing it with an available established result from which an excellent agreement is observed.

Publisher

IOP Publishing

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3