Initially generated pure mode A in the three-dimensional wake transition of a circular cylinder

Author:

Lin L MORCID

Abstract

Abstract The initially generated pure mode A, as a transitional stage, is investigated in the three-dimensional wake transition of a circular cylinder. Direct numerical simulations are carried out over a range of Reynolds numbers from 100 to 210. According to the different dynamic behaviors of hydrodynamic parameters and similar features in the spatiotemporal evolution of vorticity in the near wake, two stages are identified. The first, investigated here, is the initial generation of pure mode A at Reynolds numbers less than 195, while the second, already reported, is the full development of pure mode A at Reynolds numbers greater than 195. The relationship between the volume-RMS (root-mean-square) vorticity and Reynolds number indicates two critical Reynolds numbers, 145 and 195 (at most). The first critical Reynolds number denotes the initial appearance of three-dimensional instability. The second critical Reynolds number indicates the transition of pure mode A from the initially generated state to the fully developed state in the near wake. After the first critical Reynolds number, the evolution of the vorticity in the near wake and on the rear surface of the cylinder clearly shows that the appearance of pure mode A is a gradual process, rather than a sudden process accompanied by a jump in vortex shedding frequency. In particular, as the Reynolds number increases, the streamwise vorticity first appears on and near the cylinder surface, then in the shear layers, and finally in the shedding primary vortices, instead of appearing instantaneously in the shedding vortices after the instability of primary vortex cores.

Publisher

IOP Publishing

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3