Experimental and numerical study on unsteady entrainment behaviour of ventilated air mass in underwater vehicles

Author:

Qu Zhaoyu,Yang Nana,Yao Xiongliang,Wu Wenhua,Ma Guihui

Abstract

Abstract The hydrodynamic characteristics of underwater vehicles are significantly affected by the ventilated cavity covered by the vehicle surface. In this paper, the unsteady flow characteristics of this ventilated cavity are studied using experimental and numerical methods, and the unsteady entrainment behaviour of the ventilated air mass is emphasised. The flow pattern of the ventilated air mass is recorded using a high-speed camera. The large eddy simulation turbulence model is employed for the numerical simulations, and a good agreement is observed between the experimental and numerical results. In the early stage of the formation of the ventilated air mass, the internal structure exhibits a symmetric kidney vortex system, while the ventilated cavity below the vent hole has a continuous hairpin vortex structure. The ventilated air mass experiences a growth stage, an entrainment stage, and a shedding stage. The entrainment behaviour enables the ventilated air mass to quickly fill the ventilated cavity and modifies the surface pressure distribution of the vehicle. As the cavitation number decreases, the radial size of the ventilated cavity increases, and the contact area between the cavity and the water body increases, thus enhancing the vertical drag coefficient of the vehicle.

Funder

National Natural Science Foundation of China

National Natural Science Foundation Enterprise Innovation and Development Joint Fund

National Defense Basic Scientific Research Program of China

Publisher

IOP Publishing

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3