Abstract
Abstract
In this study, we explore the entanglement of free spin-
, spin-1, and spin-2 fields. We start with an example involving Majorana fields in 1+1 and 2+1 dimensions. Subsequently, we perform the Bogoliubov transformation and express the vacuum state with a particle pair state in the configuration space, which is used to calculate the entropy. This clearly demonstrates that the entanglement entropy originates from the particles across the boundary. Finally, we generalize this method to free spin-1 and spin-2 fields. These higher free massless spin fields have well-known complications owing to gauge redundancy. We deal with the redundancy by gauge-fixing in the light-cone gauge. We show that this gauge provides a natural tensor product structure in the Hilbert space, while surrendering explicit Lorentz invariance. We also use the Bogoliubov transformation to calculate the entropy. The area law emerges naturally by this method.
Subject
Astronomy and Astrophysics,Instrumentation,Nuclear and High Energy Physics