Pre-neutron fragment mass yields for 235U(n, f ) and 239Pu(n, f ) reactions at incident energies from thermal up to 20 MeV*
-
Published:2023-04-01
Issue:4
Volume:47
Page:044101
-
ISSN:1674-1137
-
Container-title:Chinese Physics C
-
language:
-
Short-container-title:Chinese Phys. C
Author:
Zou Fanglei,Sun Xiaojun,Zhang Kai,Chen Hongfei,Yan Jie,Tian Junlong,Cui Yunyi
Abstract
Abstract
Pre-neutron fragment mass yields in the vicinity of the thermal neutron energy are highly important for applications because of the larger fission cross sections of the
U(n, f) and
Pu(n, f) reactions. In this paper, pre-neutron fragment mass yields at incident energies from thermal up to 20 MeV are systematically studied using an empirical fission potential (EFP) model, the potential parameters of which are obtained from the measured data. The energy dependences of the peaks and valleys of the pre-neutron fragment mass yields are described by exponential and linear functions for the
U(n, f) and
Pu(n, f) reactions, respectively. The energy dependences of the evaporation neutrons, which play a crucial role in the reasonable description of pre-neutron fragment mass yields, are also obtained from the fission cross sections. The pre-neutron fragment mass yields in this study are not only consistent with the results of previous studies in regions of several MeVs but also agree well with existing measured data at incident energies from thermal up to 20 MeV. The results show that the feasibility of this EFP model is verified in this extended energy region.
Funder
National Natural Science Foundation of China
Scientific Research and Technology Development Project of Guilin
Key Laboratory of Neutron Physics China Academy of Engineering Physics
the Central Government Guides Local Scientic and Technological Development Funds of China
Natural Science Foundation of Guangxi Province
Subject
Astronomy and Astrophysics,Instrumentation,Nuclear and High Energy Physics