Study of neutron density fluctuation and neutron-proton correlation in Au+Au collisions using PYTHIA8/Angantyr*

Author:

Zhang 张 Zuman 祖满,Li 李 Sha 莎,Yu 喻 Ning 宁,Lin 林 Jianping 健平,Li 李 Shuang 双,Tang 汤 Siyu 思宇,Zhou 周 Daicui 代翠

Abstract

Abstract Utilizing the PYTHIA8 Angantyr model, which incorporates the multiple-parton interaction (MPI) based color reconnection (CR) mechanism, we study the relative neutron density fluctuation and neutron-proton correlation in Au+Au collisions at = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV. In this study, we not only delve into the dependence of these two remarkable observations on rapidity, centrality, and energy, but also analyze their interplay with the MPI and CR. Our results show that the light nuclei yield ratio of protons, deuterons, and tritons, expressed by the elegant expression , remains unchanged even as the rapidity coverage and collision centrality increase. Interestingly, we also reveal that the effect of CR is entirely dependent on the presence of the MPI; CR has no impact on the yield ratio if the MPI is off. Our findings further demonstrate that the light nuclei yield ratio experiences a slight increase with increasing collision energy, as predicted by the PYTHIA8 Angantyr model; however, it cannot describe the non-monotonic trend observed by the STAR experiment. Based on the Angantyr model simulation results, it is essential not to overlook the correlation between neutron and proton fluctuations. The Angantyr model is a good baseline for studying collisions in the absence of a quark-gluon plasma system, given its lack of flow and jet quenching.

Funder

Natural Science Foundation of Henan Province

NSFC

Key Research Projects of Henan Higher Education Institutions

Science and technology research project of Hubei Provincial Department of Education

the Scientific Research Foundation of Hubei University of Education for Talent Introduction

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics,Instrumentation,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3