Author:
Sun Shuai,Zhang Shi-Sheng,Zhang Zhen-Hua,Cao Li-Gang
Abstract
Abstract
We examined the low-lying quadrupole states in Sn isotopes in the framework of fully self-consistent Hartree-Fock+BCS plus QRPA. We focus on the effect of the density-dependence of pairing interaction on the properties of the low-lying quadrupole state. The SLy5 Skyrme interaction with surface, mixed, and volume pairings is employed in the calculations, respectively. We find that the excitation energies and the corresponding reduced electric transition probabilities of the first 2+ state are different, given by the three pairing interactions. The properties of the quasiparticle state, two-quasiparticle excitation energy, reduced transition amplitude, and transition densities in 112Sn are analyzed in detail. Two different mechanisms, the static and dynamical effects, of the pairing correlation are also discussed. The results show that the surface, mixed, and volume pairings indeed affect the properties of the first 2+ state in the Sn isotopes.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Astronomy and Astrophysics,Instrumentation,Nuclear and High Energy Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献