Dark matter with chiral symmetry admixed hadronic matter in compact stars

Author:

Wei SiNa,Feng ZhaoqingORCID

Abstract

Abstract With the two-fluid TOV equation, the properties of dark matter (DM) admixed NSs (DANSs) have been studied. Different from previous studies, we found that increase of the maximum mass and decrease of the radius of 1.4 $M_\odot$ can occur simultaneously in DANS. This stems from the fact that the equation of state (EOS) of DM can be very soft at low density but very stiff at high density. It is well known that the IU-FSU and XS models can not reproduce the neutron star (NS) with a maximum mass greater than 2.0 $M_\odot$. However, considering IU-FSU and XS models in DANS, there are always mass and interactions of DM that can reproduce a maximum mass greater than 2.0 $M_\odot$ and the radius of 1.4 $M_\odot$ below 13.7km. The difference of DANS between the DM with chiral symmetry (DMC) and the DM with meson exchange (DMM) becomes obvious when the central energy density ratio of the DM is greater than one of the NM. When the central energy density ratio of the DM is greater than one of the NM, the DMC model with the DM mass of 1000 MeV still can reproduce a maximum mass greater than 2.0 $M_\odot$ and the radius of 1.4 $M_\odot$ below 13.7km. In the same case, although the maximum mass of DANS with the DMM model is greater than 2.0 $M_\odot$ , the radius of 1.4 $M_\odot$ with the DMM model will surpass 13.7km obviously. \com{In two-fluid system, it is worth noting that the maximum mass of DANS can be larger than 3.0 $M_\odot$. As a consequence, the dimensionless tidal deformability $\Lambda_{CP}$ of DANS with 1.4 $M_\odot$, which increase with increasing the maximum mass of DANS, could be larger than 800 when the radius of DANS with 1.4 $M_\odot$ is about 13.0km.}

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics,Instrumentation,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3