Hydrodynamic description of D meson production in high-energy heavy-ion collisions *

Author:

Ding Chi,Ke Wei-Yao,Pang Long-Gang,Wang Xin-Nian

Abstract

Abstract The large values and constituent-quark-number scaling of the elliptic flow of low- D mesons imply that charm quarks, initially produced through hard processes, might be partially thermalized through strong interactions with quark-gluon plasma (QGP) in high-energy heavy-ion collisions. To quantify the degree of thermalization of low- charm quarks, we compare the meson spectra and elliptic flow from a hydrodynamic model to experimental data as well as transport model simulations. We use an effective charm chemical potential at the freeze-out temperature to account for the initial charm quark production from hard processes and assume that they are thermalized in the local comoving frame of the medium before freeze-out. mesons are sampled statistically from the freeze-out hyper-surface of the expanding QGP as described by the event-by-event (3+1)D viscous hydrodynamic model CLVisc. Both the hydrodynamic and transport models can describe the elliptic flow of mesons at GeV/c as measured in Au+Au collisions at GeV. Though the experimental data on spectra are consistent with the hydrodynamic result at small GeV/c, they deviate from the hydrodynamic model at high transverse momentum, GeV/c. The diffusion and parton energy loss mechanisms in the transport model can describe the measured spectra reasonably well within the theoretical uncertainty. Our comparative study indicates that charm quarks only approach local thermal equilibrium at small , even though they acquire sizable elliptic flow comparable to light-quark hadrons at both small and intermediate .

Funder

National Natural Science Foundation of China

UCB-CCNU Collaboration Grant

U.S. Department of Energy Office of Science User Facility

U.S. Department of Energy

U.S. National Science Foundation

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics,Instrumentation,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3