Color halo scenario of charmonium-like hybrids *

Author:

Ma Yunheng,Sun Wei,Chen Ying,Gong Ming,Liu Zhaofeng

Abstract

Abstract The internal structures of charmonium-like hybrids are investigated under lattice QCD in the quenched approximation. We define the Bethe-Salpeter wave function ( ) in the Coulomb gauge as the matrix element of a spatially extended hybrid-like operator ( ) between the vacuum and n-th state for each , with r being the spatial separation between a localized component and the chromomagnetic strength tensor. These wave functions exhibit some similarities for states with the aforementioned different quantum numbers, and their r-behaviors (no node for the ground states and one node for the first excited states) imply that r can be a meaningful dynamical variable for these states. Additionally, the mass splittings of the ground states and first excited states of charmonium-like hybrids in these channels are obtained for the first time to be approximately 1.2-1.4 GeV. These results do not support the flux-tube description of heavy-quarkonium-like hybrids in the Born-Oppenheimer approximation. In contrast, a charmonium-like hybrid can be viewed as a “color halo” charmonium for which a relatively localized color octet is surrounded by gluonic degrees of freedom, which can readily decay into a charmonium state along with one or more light hadrons. The color halo picture is compatible with the decay properties of and suggests LHCb and BelleII to search for charmonium-like hybrids in and final states.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics,Instrumentation,Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3